
An Algebra of Facial Expressions
Aldo Paradiso
Fraunhofer IPSI

D-64293 Darmstadt, Germany
paradiso@ipsi.fraunhofer.de

ABSTRACT
In this paper we introduce an algebraic structure consisting of a set of operators and related properties defined over a set
that is a generalization of the MPEG-4’s Facial Animation Parameters. This structure, which we call Algebra of
Expressions, is then discussed and interpreted. A set of examples of algebraic expressions applied onto a facial model is
then presented, showing that the algebra of expressions may be used: a) to describe, manipulate, and generate in a
compact way facial expressions; b) as a tool to further study and better understand the role of emotions conveyed by
facial expressions and their relationships; c) as a basis to define an animation algorithm for MPEG-4 compliant facial
models.

1 Introduction
Humans need to communicate each other, and they perform such a task in a unique way, that employs the
contemporary use of human senses and skills. In human-computer interaction (HCI) has emerged the fact
that software systems have become new active actors in the communication scenario. Such actors, referred as
agents, chatterbots, or characters, have some communication capabilities, some know-how and some
reasoning skills. In such a picture embodied conversational agents represent an evolution, towards the
personifications of the agents, in terms of appearance, communication skills and simulation of senses.
In figure 1 some different paradigms employed in HCI have been outlined. The sight is the sense most
commonly used to communicate, and facial expressions are among the communication channels visually
interpreted as well. The face conveys most of the signals sent among humans. Some of them may occur
contemporary, such as visemes, emotions, comments, and biological needs. We concentrate our work on
such channels (outlined in red or in bold in picture 1).
In our representation, the visual patterns are described and coded with MPEG-4 Facial Animation Parameters
that in turn are applied
onto a facial model via
facial displays. MPEG-
4 is an object-based
multimedia
compression standard,
which allows for
encoding of different
audio-visual objects of a
scene independently. In
particular, MPEG-4
enables the integration of facial animation with multimedia communications and presentations and allows
facial animation over low-bandwidth communication channels. In this approach, each facial expression is
coded as an ordered sequence of 68 integer numbers, called Facial Animation Parameters (FAPs). Each of
the parameters 3-68 acts on points defined on a synthetic face (feature points), and each point governs the
deformation of its surrounding area, resembling muscle movements [8]. This approach is an evolution of the
FACS coding system developed by Ekman and colleagues in 1972 [4].
We do not address directly body gestures, but the Algebra of Expressions that we introduce later may be
employed to describe and generate such movements as well. In addition, we do not address speech.
However, the representation model we introduce below allows speech synchronization, and we implemented
a facial animation prototype where a TTS system has been integrated [6].
Several works have been carried out where synthetic characters have been designed to simulate human
senses. Among them it is worth noting the complete work of Cassell et al. Cassell’s team developed REA
[2], a system designed to sense users actions and behaviors during a face-to-face conversation, carrying on
reactions and answers based not only on dialogical but even on non-verbal cues. Results achieved in the
analysis developed by Cassell’s team as well as their terminology has been adopted in this work [1].
Classifications of facial animation techniques and approaches can be found in [3], [13], and [7]. Other works
can be found in [19]. Most of them address the possibility of generating facial expressions, and relate them to
the ongoing dialogue. However, the adopted solutions lack of generality. Most systems work optimally in

Figure 1 - Communication channels employed in HCI

Channel of
communication Visual

Body
Gestures

Facial

Visemes

Emotions

Comments

Biological
needs

MPEG-4
FAPs

Facial
Display

Tactile

Audio
Speech

Guttural
sounds

narrow environments, where special facial models are needed, or a limited set of facial expressions has been
defined, and tailored ad-hoc to the application. In other words, there is the need of an ideal facial animation
system that gives the possibility to fully control a set of parameters for both the definition of the facial model
and the definition of facial expressions and animations. Also, an ideal parameterization and interface should
allow the animator to easily specify any individual face with any speech and expression sequence [14]. The
FACS system has been the best current basis for low-level expression parameterization, but it was too
abstract from the animator’s viewpoint. The development of MPEG-4 facial animation model, with the
introduction of the FAPs, has been a great development of the FACS. Still, MPEG-4 is too low-level, and it
misses an upper layer that allows defining, mastering, and manipulating facial expressions as a whole. As a
matter of facts, the human face can generate around 50.000 distinct facial expressions, which correspond to
about 30 semantic distinctions [18]. Clearly the human face is extremely expressive. Is it possible to cover
this amount with a minimal set of expressions and a set of transformations on such a set, without
manipulating directly the set of facial animation parameters?
In research on facial animation other authors have explored the possibility of combining facial expressions.
Ken Perlin has developed a system – Improv – where he showed how to make an embodied agent react with
responsive facial expression, without using repetitive pre-built animations, and how to mix those facial
expressions to simulate shifting moods and attitudes [16]. A convincing demo has been given in [15] where
Perlin’s Noise function has been employed to provide the facial model with pseudo-natural movements. In
MPEG-4 an algorithm to blend together two expressions is suggested; in this approach the concept of
excitation (or intensity) of an expression is mixed with the one of combination of two expressions. On our
side we extend and distinguish these two concepts, by defining two different operators, introduced in the
following section. Tao et al. [17] propose a method to encode human facial movement patterns. They
compress FAP streams in a more compact format, and approximate the function that represents the FAP
values over time (called by them projection function) with a series function being the sum of simpler
functions (called humps). The composition of hump functions may therefore approximate with arbitrary
precision the projection function by adding more terms.
Other authors describe what they call “intensity of expressions” even if in most cases they do not clarify
what “intensity” means: whether it refers to muscle tension or to human-perceived actions, or other. Won-
Sook Lee and al. [20] describe dynamics of facial expressions in terms of three different types of envelopes.
They also define an action blending technique in order to avoid discontinuities between facial movements
when different expressions and visemes are dynamically concatenated in a unique animation flow. Neumann
[9] proposes a process called expression cloning that provides a new alternative for creating facial
animations for character models. Their method transfers each vertex motion vector from a source face model
to a target model having possibly different geometric proportions and mesh structure.
As an alternative approach we introduce an algebraic structure consisting of a set of operators and related
properties defined over a set that is a generalization of the MPEG-4’s FAPs. In other words we pursue the
possibility of creating new facial expressions by acting on instances of previous expressions, and we do that
in a formal way, by first of all developing an algebra where a set of operators is defined on a domain
modeled according to the definition of MPEG-4 FAP. Secondly, we discuss how to relate the formal
construct to a world populated by “real” facial expressions.
In the following sections we introduce an algebraic structure where an initial set (of facial displays) is
defined, together with a set of operators. We will then demonstrate a set of properties hold by the operators
and derive considerations about possible interpretations of such a structure. Finally we will show some
example of operations implemented in the Tinky system [10] and performed on a facial model.

2 Definition of the Algebra of Expressions
In [12] the authors have introduced the concept of motivators, which represent sets of parameters usually
identifying emotions, attitudes, or any mental or physical state that contributes to generate facial displays. In
the same work a preliminary development of the Algebra of Expressions (AoE) has been shown, which is
now extended in this section.

2.1 Operators
As stated before, we introduce a set of operators that allow us to manipulate FAP streams in order to
generate new facial expressions, based on a set of initial expressions.

2.1.1 Facial states
A Facial state S is defined as a set of 66 integer numbers (s3, ..., s68) where, to each element si (i=3, …, 68)
apply respectively the constraints defined in the MPEG-4 Facial Animation Parameter definitions table.1

These constraints impose to some of the elements to be ≥0.
Domain: We denote the domain, i.e. the space of all the facial states, with the symbol . Such a domain is a
subset of the Cartesian product of the integer set, 66. That is, there exists a family of sets S3, S4, …, S68 such
that

= S3XS4X ...XS68

All the sets Si (i=3, …, 68) are subject to the constraints defined in the MPEG-4 FAP definitions table (see
table of FAPs in [MPEG-4]). For example, the element s3∈ Si, corresponding to FAP 3 (open_jaw) may only
assume positive values.

2.1.2 Continuity
Each Si (i=3, …, 68) is a sub range of the set . This means that, for any m, n ∈ Si, with m<n, if exists an
integer p such that m<p<n, then p∈ Si. In other words, all the elements of Si are contiguous integers. We
denote this property as continuity (not to be confused with the continuity property of the real numbers).
Since we have defined every Si (i=3, …, 68) holding the continuity property, we indicate it simply by stating
that is continuous.

2.1.3 Sum

If we have two facial states S=(s3, ..., s68) and T=(t3, ..., t68), with si, ti∈ (natural numbers), we define the
sum operator +v as the following facial state:

+v(S, T) = si·v + ti·(1-v) i=3, ..., 68 and v∈ [0,1] (1)

If v=0.5 this operator will produce a facial state being the mean of the first two ones. Since v is a real
number, the products si·v and ti·(1-v) are real number as well. Therefore we used the symbols to denote the
approximation to the closest integer number.
For simplicity we denote +v(S, T) with S +v T.
Indeed, the parameter v∈ [0,1] introduces an infinite family of operators. However, for simplicity, we
continue to denote +v as a single operator. The following properties will be hold by the whole family of
operators, because we will prove them for every v∈ [0,1].

Closure: The set is closed with respect to the sum. This means that we always get facial states that obey to
the constraints imposed in the definition of . In fact, given two facial states S, T∈ we have ri = R = S +v T
= si·v + ti·(1-v) where i=s3, ..., s68. For every index i and every v∈ [0,1] we have si ≤ ri ≤ ti. Since both S
and T are continuous, then R∈ .

Commutative property: The sum is not commutative. If we have two facial states S and T, it is easy to
prove that S+vT ≠ T+vS. This depends on the value of v, which is a weight defining a degree of influence of
one state instead of the other. An exception arises when v=0.5, where the sum becomes commutative.

Associative property
The sum holds the associative property. Given three facial states S, T, and U, we have: (S+vT)+µU = S+v

(T+µU) for any given v, µ∈ [0,1].
The associative property guarantees the fact that we may apply the operator to several states, in different
order. However, the order of the operands is relevant because of the lack of commutative property
Because of the associative property, the algebraic structure (, +v) is a semigroup.
Identity: The set does not have an identity with respect to the sum. In fact, for each S∈ it does not exist
an element N such that S+vN = S. Indeed, as a trivial case, such an element is S itself. That is to say, for each
S∈ , S +v S = S.

2.1.4 Amplifier

An amplifier w∈ℜ is a scalar operator so that, if we have a facial state S=(s3, ..., s68), then:

S·w = w·S = (w·s3, w·s4, ..., w·s68) (2)

1 We do not consider the indexes 1 and 2, corresponding to FAP 1 and 2, because these FAPs do not represent facial
movements, but expressions (and visemes) as a whole, and do not apply to this analysis.

Indeed, the amplifier is a particular case of sum, where the second element is the zero vector N = (03, …,
068). In fact, we have S +w N =S·w. However, for simplicity, we will consider the amplifier as a different
operator, because it will be largely employed.

Closure: The set is closed with respect to the amplifier operator. This means that we always get facial
states that obey to the constraints imposed in the definition of .

Identity: The identity value for the amplifier is 1. In fact, for each S∈ we have S·1 = 1·S = S.

2.1.5 Overlapper
Let us introduce mask vectors M=(m3, ..., m68) where mi=0 or 1. Mask vectors will serve us to identify partial
regions of the complete FAP vector without loosing generality, i.e. we deal with vectors having the same size
in all our computations. If we have a facial state S=(s3, ..., s68) the partial region identified by M is SM = MT·S
where MT is the transpose of M. Then, if we consider two facial states S, T with masks respectively M1 and
M2 and priorities p1 and p2, p1≠p2, we introduce the overlapping operator Ω so defined:

Ω (SM1,p1, TM2,p2) = (gi) =

where i=3,...,68.

For simplicity we denote Ω (SM1,p1, TM2,p2) with SM1,p1 Ω TM2,p2 or simply with S Ω T if this does not bring any
ambiguity. If the priorities are the same, the operation remains undefined. As for the sum, we actually
introduced a family of operators, defined both by the variability of mask vectors and the one of priorities. For
simplicity we will consider a single operator, meaning the whole family. The properties investigated below
will hold for the whole family, if not differently stated.

Closure: The set is closed with respect to the overlapper. In fact, if R = S Ω T, for any si∈ R, we have that
si∈ S or si∈ T, both elements of ; thus R must be a vector of as well.

Identity: The set does have an identity with respect to the overlapper. The identity is the vector N = (03,
…, 068). In fact, for each S∈ we have:

S Ω N = N Ω S = S

Inverse: The set does not have inverse elements with respect the overlapper. In other words, for each S∈ ,
does not exist an element S-1 so that S Ω S-1 = S-1 Ω S = N. The only exception is the identity N.

Commutative property: The overlapper holds the commutative property. Given two facial states S and T,
with masks M1 and M2, and priorities p1 and p2, p1≠p2, we have:

S Ω T = T Ω S

Proof: Let R = S Ω T. If ri∈ R, then we distinguish two cases:
Case a) ri = si + ti = ti + si (i.e. commutative)
Case b) ri = si or ri = ti depending on their priority. This result is independent of the position of the operands.
In both cases the commutative property holds.

Associative property: The overlapper holds the associative property. Given three facial states S, T, and U,
we have: (SM1,p1Ω TM2,p2) Ω UM3,p3 = SM1,p1 Ω (TM2,p2 Ω UM3,p3) for any given M1, M2, and M3 and any priority
p1, p2, and p3, with p1≠p2≠ p3.

Proof: Let us have si∈ S, ti∈ T, and ui∈ U. For each set of three values si, ti, and ui their value may be zero or
not. If we indicate with v a value ≠0 we distinguish 8 major cases, corresponding to the different
combinations of zeroes and values v’s:

1) 000 2) 00v 3) 0v0 4) 0vv
5) v00 6) v0v 7) vv0 8) vvv

Then, for each of these combinations, different priority values must be considered. Moreover, for each
combination, 6 different cases of priority arise, and the total number of cases is 6x8=48. However, priorities
apply only if at least two values are ≠0. Thus cases 1, 2, 3, and 5 may be proved without involving priorities,
as follow:
Case 1) (0 Ω 0)Ω 0 = 0 Ω 0 = 0 Ω(0 Ω 0)
Case 2) (0 Ω 0) Ω v = 0 Ω v = v = 0 Ω(0 Ω v)
Case 3) (0 Ω v) Ω 0 = v Ω 0 = v = 0 Ω(v Ω 0)
Case 5) (v Ω 0) Ω 0 = v Ω 0 = v = v Ω(0 Ω 0)
The rest of the cases must be considered with priorities. Let be p1, p2, and p3 respectively priorities of S, T,
and U. We call v1, v2, and v3 values with priorities p1, p2, and p3.
Case 4a) p2>p3 then (0 Ω v2)Ω v3 = v2 Ω v3 = v2 = 0 Ω(v2 Ω v3)

gi=si+ti if si or ti =0

gi=si if p1>p2; gi=ti otherwise

(3)

Case 4b) p2≤p3 then (0 Ω v2)Ω v3 = v2 Ω v3 = v3 = 0 Ω(v2 Ω v3)
Case 6a) p1>p3 then (v1 Ω 0)Ω v3 = v1 Ω v3 = v1 = v1 Ω(0 Ω v3)
Case 6b) p1≤p3 then (v1 Ω 0)Ω v3 = v1 Ω v3 = v3 = v1 Ω(0 Ω v3)
Case 7a) p1>p2 then (v1 Ω v2)Ω 0= v1 Ω v2 = v1 = v1 Ω(v2 Ω 0)
Case 7b) p1≤p2 then (v1 Ω v2)Ω 0= v1 Ω v2 = v2 = v1 Ω(v2 Ω 0)
Case 8) In such a case the result is always determined by the element with higher priority, no matter the way
in which the overlapper applies. As example, consider the case p1>p2 and p1>p3. We have:

(v1 Ω v2)Ω v3= v1 Ω v3 = v1. But also v1 Ω (v2Ω v3) = v1Ω v3 or v1Ω v2 that both give v1.
The associative property guarantees the fact that we may apply the operator to several states, in different
order. Both the order of the operations and the one of the elements may be arbitrarily changed, because of the
associative and commutative property, respectively.
Because of the associative property, the algebraic structure (, Ω) is a semigroup. In addition, it is
commutative, and has an identity. Therefore it is a commutative monoid.

Distributivity: The operators defined above hold the distributive property as well. In particular the amplifier
distributes over the sum, as follows:
Given two facial states S, T ∈ we have: w·(S +v T) = w·S +v w·T v∈ [0,1]

Proof: Given two facial states S = (s3, ..., s68) and T = (t3, ..., t68), we have, for each i=3, …,68
w·(si +v ti) = w·(si·v + ti·(1-v)) = w·si·v + w·ti·(1-v) = w·S +v w·T

The distributivity of the amplifier over the overlapper is stated as follows:
Given two facial states S, T ∈ we have: w·(S Ω T) = w·S Ω w·T

Proof: Let us have si ∈ S and ti ∈ T, with masks respectively M1 and M2 and priorities p1 and p2. For each
i=1, …,68 we have the following cases:

a) si or ti = 0 then w·(S Ω T) = w·(si Ω ti) = w·si or w·ti = w·S Ω w·T
b) si and ti ≠ 0, then w·(S Ω T) = w·(si Ω ti) for each I=1, …,68. Suppose p1 > p2, we have

w·(si Ω ti) = w·si = w·S = w·S Ω w·T. With p1 ≤ p2 we have: w·(si Ω ti) = w·ti = w·T = w·S Ω w·T

However, the overlapper does not distribute over the sum, nor the sum distributes over the overlapper. This
means that these two operators may not be applied with an arbitrary order to the facial states; otherwise the
result may be, in general, different. In other words, for some A, B, and C ∈ we have:
A Ω (B +v C) ≠ (A Ω B) +v (A Ω C), and A +v (B Ω C) ≠ (A +v B) Ω (A +v C).

3 Interpretation of the Algebra of Expressions
The operators introduced above define an algebraic structure that is not complex nor special, because it does
not introduce a new mathematical concept. What makes sense is its interpretation in a different domain.
Interpreting the algebra of expressions means establishing a relationship between two domains belonging to
different universes. In particular, the relationship we are interested in is an isomorphism. Recognizing, or
defining an isomorphism between two domains means that determinate actions produced in one domain
reflect precise actions performed into the other domain. In other words, establishing an isomorphism
between two domains means adding semantics to both of them. Our aim is to build interpretations that match
with the common sense, that are reasonable, and that are supported by scientific argumentations.

3.1.1 Facial Displays
We want to interpret , the domain of all the facial states defined according to the definition in 2.1.1. An
interpreted domain usually resides in some real world. In our case we distinguish at least two different
interpretations, according to our common sense and experience. The domains corresponding to the
interpretations are the following:
o The human-like facial expressions. Elements of are facial expressions, which are usually recognizable

onto human faces. A facial expression in such a sense is a static picture of the face. Facial movements are
not considered here.

o The cartoon-like facial expressions. The range of movements allowable to cartoons is larger than for
humans. Expressions may be exaggerated, and other movements are possible and acceptable, which are
impossible for humans. Each cartoon animator may impose his constraints, depending on his experience,
on the acceptance of the spectators, and on the cartoon identity.

In both interpretations the range of allowable values, i.e. instances of S∈ , is limited by the physical (for
humans) or pseudo-physical (for cartoons) constraints imposed by muscle limited stretching properties.
Therefore we introduce a more limited domain, imposed by these constraints, called set of facial displays.

We denote such a set with . We say that instances of vectors belonging to , if applied onto an MPEG-4
compliant facial model, produce a reasonable effect. By reasonable effect we intend the following:
a) Each vector E ∈ has integer elements ei (i=3, …, 68) assuming a value that describes, or simulates, the

stretch value of a facial action, i.e. one or more muscles that produce a visible effect onto the face,
according to the notation defined in the MPEG-4 standard.

b) Each vector E represents a FAP stream that, if applied onto a facial model, let humans recognize some
type of facial display.

The set is a strict subset of . This assertion is valid because:
a) Every element belonging to belongs to as well, i.e. facial displays are particular cases of facial states.
b) There is some element belonging to that does not belong to . In fact, there are some facial states that

do not correspond to any human-like facial expression. For example, the facial state S=(s3, ..., s68), where
every si = 0 except s3 = 5000 corresponds to a FAP stream where the FAP open_jaw = 5000. Such a value
is too large for any feasible opening of a human lower jaw. For cartoons-like facial displays the range is
greater than for humans, however there exist an upper limit for such displays as well.

If we denote with the set of human-like facial expressions and with the cartoon-like facial expressions,
we observe that:

⊂ ⊂
For simplicity, we define = ∪ , the union of human-like and cartoon-like facial displays. If not stated
otherwise we will talk about the set of facial displays .

3.1.2 Continuity in the interpreted domains
We need to verify if the continuity property, defined in paragraph 2.1.2 holds in the interpreted domain. This
verification is necessary because the interpreted domains are smaller than the original one.
We begin by observing that facial displays have an anatomical interpretation. In fact, by identifying facial
displays with FAP streams defined by the MPEG-4 standard, we derive that they represent some muscle
displacement over the face.
A facial display represents, in general, a set of facial muscles during an effort state, in which they elongate
(or contract) of a certain value. It is opportune to take into consideration the properties of muscles, and in
particular the elongation property. Because of such a property, muscle lengths may assume all values
between a range, whose extension is determined by anatomical properties.
Therefore we can assert that the continuity holds also in the interpreted domain .

3.1.3 Closure in the interpreted domains

Closure of the sum: The output value of the sum is always a value in between of the two given ones. Since
is continuous, the output values belong to as well. Therefore the domain is closed with respect to the

sum.

Closure of the amplifier: The amplifier is a particular case of sum; therefore is closed with respect to the
amplifier as well.

Closure of the overlapper: If we have two facial displays S, T ∈ , The display R = S Ω T belongs to as
well. This is because for any ri∈ R, we have ri∈ S or ri∈ T, both elements of . Thus, in the interpreted domain

the overlapper is closed.

4 Examples
The operators introduced above have been implemented as methods included in an Application Programming
Interface developed in Java. The API has been incorporated as a part of the Tinky and Fanky systems,
developed by the author in [10] and [11].
We are now in the position of showing some concrete examples of using the operators introduced above.
The facial model on which the operators have been applied has been employed in both Tinky and Fanky
systems. It consists in a VRML-based 3-D cartoon face, with low level of details, but enough to represent
facial expressions. Figure 2 shows an example of use of the sum operator over two expressions (anger and
smile) applied onto the same face, with v=0.5. In the example of figure 3 the amplifier operator has been
applied onto a smiling expression, where the initial value has been amplified by w= 2.0.

The amplifier may be used to inhibit an expression, of course. Figure 4 shows an angry expression mediated
with a value of w=0.5. Negative values have been tested as well. Indeed, we found out that such values give
interesting results: in
general, negative
values produce
accordingly a
negation of the
expression. The
negation of a smiling
face seems to be a sad
face, the negation of
an angry face results
in a surprised face.
We are currently
investigating the
effects of providing
negative values to the
amplifier.
Figure 5 shows the employment of the overlapper. In (a) a smiling face and in (b) an angry face are shown.
The mask associated to (a) covers the mouth area, while the mask associated to (b) covers the eyes and
eyebrows areas. Their
overlap, according to
these masks, is shown in
(c). Note that the figure
in (c) resembles a
surprised expression.
This shows how it is
possible to derive new
expressions from old
ones that are
semantically different.
By using the same
expression switching the
role of the masks a
different overlap is
produced, as shown in (d): the mouth is smiling and the eyes are
angry. Again, this expression holds a semantic different from the previous ones, signaling smartness,
arrogance or sense of superiority.
The operators of the algebra of expressions may be combined together, so to arrange more complex algebraic
expressions. They can be used to manipulate original displays in order to derive new ones even completely
different.
For example, if we overlap a neutral expression N with the eyebrows area of an angry expression A and then
we amplify the result by w= -1.3 we obtain a resulting expression: R = -1.3*(N Ω A). The result is shown in
figure 6. The new expression
demonstrates slight surprise,
or is a conversational signal
of interest. Again, note that
this expression is
semantically very different
from the original ones.
Asymmetric expressions may
be produced as well by
employing the operators
above defined.
A way to produce an
asymmetric expression by
using the algebra, for

Figure 2 - Merging expressions. In order we have: anger (a), smile (b), their weighted
sum (c), and the neutral expression (d).

a b c d

Figure 3 - Emphasizing a smile Figure 4- inhibiting an angry expression

Figure 5 - Overlapping expressions. In order we have: smile (a), angry (b), one overlap
(c), and a second different overlap (d).

a b c d

example, is taking an expression E, amplify (or inhibit) it by a value w, and then overlap the left (or the right)
part of the result with E. If we define M1 and M2 respectively as left and right masks we have:

R = (E·w)M1 Ω EM2

Figure 7 shows an example, where an asymmetric smile is produced. The value of the amplifier operator in
this case is w=2.
The employment of the
overlapper is somehow
complicated by the
necessity of defining
masks. In practice, such
masks allow defining
patches to be glued
together, like in a
patchwork. However, it is
not straightforward to
define masks. In order to
make such a task easier, a
GUI containing a window
with colored labels have
been defined in the Tinky system, that allows to easily define masks by clicking onto check buttons
identifying facial areas.
By using the operators introduced above it is possible to produce a large and differentiated set of expressions
starting from very few ones. A question arises here: is it possible to isolate a basic set of displays sufficient
to produce all, or a great amount, of semantically different facial displays?
A contribution in such a direction has been
given by the work of Ekman. His research on
facial expressions brought to identify the six
major expressions universally recognizable
[5]. According to his research, other
expressions may be considered as derivative
ones. It is certainly possible to manipulate
such a basic set of expressions with our
algebra and derive new ones. However,
identifying a basic set of recognizable
expressions does not necessarily mean to
identify a basic set of vectors of our algebra
with which we can extensively produce new
displays. In addition, the notion of facial
display involves facial clues that do
contribute in facial communication, but that
are not necessarily facial expressions
conveying emotion.

5 Conclusions and Future work
The introduction of algebraic expressions built using the AoE operators and acting on an initial set of facial
displays defines implicitly a language, where the operators and the displays are the alphabet and the
algebraic expressions are the words and sentences. The syntax and the grammar rules are defined by the
properties shown in section 2, that provide a criterion to distinguish well-formed words (noun phrases) from
wrong ones. Examples of sentences have been given in figure 6 and 7. In figure 6 the sentence has the
following meaning: “take only upper part of expression E (i.e. eyebrows) and reverse it”. The sentence of
figure 7 has the meaning: “Make expression E asymmetric”. In both cases the expression is a variable, which
will be given a value in order to finalize the sentence. As a general remark, we can state that this algebra
represents a formal definition of the semantics of natural language sentences describing facial expressions.
By building a set of predefined words (i.e. algebraic expressions) of such a grammar it will be possible to
implicitly define a large set of facial displays, in a compact way, which is independent of the particular
source facial model. Indeed, a very limited set of facial expressions is probably already enough to produce a

N A NΩA R

Figure 6 – The outcome of the expression R = -1.3*(N Ω A)

E Rw ·E

Figure 7 – The outcome of the expression R = (E*2.0) Ω E

virtually unlimited set of expressions that only the practice may better define. This observation may be the
basis to define an animation algorithm for MPEG-4 compliant facial models, where animations are produced
by a decoder able to interpret the construct of this algebra into sequences of facial expressions.
Future work includes the development of ad-hoc formulas (i.e. algebraic expressions) with which we may
define and represent transformations of facial expressions, like e.g. asymmetric expressions, negations of
expressions, derivative expressions, combinations of emotions and visemes, combinations of comments (in
Cassell’s meaning) and visemes, etc. We are also engaged in developing an animation algorithm able to
exploit this algebra and use its constructs as keyframes of animations. In such a sense an effort of defining an
algebra of animations, which has the task of formalizing the structure of such an algorithm, is currently under
development as well.

6 References
[1] Cassell, J.; Sullivan, J.; Prevost, S.; Churchill E. Embodied Conversational Agents. The MIT Press,

Cambridge, Massachusetts, 2000. ISBN 0-262-03278-3. Pp. 17-21.
[2] Cassell, J.; Sullivan, J.; Prevost, S.; Churchill E. Embodied Conversational Agents. The MIT Press,

Cambridge, Massachusetts, 2000. ISBN 0-262-03278-3. Pp. 29-63.
[3] Dendi, Vikram R. A face for a robot: The path to creating a face for a socially interactive robot.

Applications to Human computer Interaction. Available from the Internet at the URL:
www.its.caltech.edu/~vikram/cs286/report

[4] Ekman, P., Friesen, W. Facial Action Coding System. Consulting psychologists Press, Inc., Palo Alto,
CA, 1978.

[5] Elkman, P. The argument and evidence about universals in facial expressions of emotion. In H. Wagner
and A. Monstead, editors, Handbook of Social Psychophysiology, pages 143-146. John Wiley, Chichester,
1989.

[6] 3rd INVITE Status Report released by the FhG IPSI to the German Federal Ministry of Education and
Research, February 2001.

[7] Jun-Yong Noh: A Survey of Facial Modeling and Animation Techniques.
[8] ISO/IEC IS 14496-2 Visual, 1999 and ISO/IEC IS 14496-1 Systems, 1999.
[9] Neumann et al. Human Face Modeling and Animation. Integrated Media Systems Center University of

Southern California 2001 NSF Report.
[10] Paradiso, A.; Nack, F.; Fries G.; Schuhmacher, K. The Design of Expressive Cartoons for the Web –

Tinky. Proceedings of ICMCS Conference, June 7-11 1999, Florence (Italy).
[11] Paradiso, A., Zambetta, F., Abbattista, F. Fanky: A Tool for Animating Faces of 3D Agents in:

Intelligent Virtual Agents - Third International Workshop, IVA2001, Madrid, Spain, September 2001
Proceedings. Edited by Angelica de Antonio, Ruth Aylett, and Daniel Ballin. Springer-Verlag - Lecture
notes in computer sciences; vol. 2190: Lecture notes in artificial intelligence, pp. 242-243.

[12] Paradiso, A., L'Abbate, M. A Model for the Generation and Combination of Emotional Expressions
Workshop on Representing, Annotating, and Evaluating Non-Verbal and Verbal Communicative Acts to
Achieve Contextual Embodied Agents, in conjunction with the Fifth International Conference on
Autonomous Agents, May 29, 2001, Montreal, Canada.

[13] Parke, F.I., Waters, K. Computer Facial Animation. Edited by A K Peters, 1996, ISBN 1-56881-014-8.
[14] Parke, F.I., Waters, K. Computer Facial Animation. Edited by A K Peters, 1996, ISBN 1-56881-014-8.

Pp. 145-146.
[15] http://mrl.nyu.edu/~perlin/facedemo/
[16] Perlin, K, Goldberg, A. Improv: A System for Scripting Interactive Actors in Virtual Worlds.

Computer Graphics; Vol. 29 No. 3., 1996.
[17] Tao, H., and S. Huang, Motion Patterns in Face Animation, IJCAI Conference, Workshop in

Animated Interface Agents: making them intelligent, Nagoya, Japan, August 25, 1997.
[18] Terzopoulos D and Waters K: ‘Analysis and synthesis of facial image sequences using physical and

anatomical models’, IEEE, PAMI, 15, No 6 (June 1993).
[19] http://mambo.ucsc.edu/psl/fan.html
[20] Won-Sook Lee, Escher, M., Sannier, G., Magnenat-Thalmann N., MPEG-4 Compatible Faces from

Orthogonal Photos.

