
Two approaches to Scripting Character Animation

Yasmine Arafa, Kaveh Kamyab
Ebrahim Mamdani

Sumedha Kshirsagar
Nadia Magnenat-Thalmann

Anthony Guye-Vuillème
Daniel Thalmann

IIS
Imperial College

London SW7 2BT, UK

MIRALab, CUI
24 rue du General Dufour

CH 1211 Geneva, Switzerland

LIG
EPFL

1015 Lausanne, Switzerland

{y.arafa,k.kamyab,e.mamdani}@ic.ac.uk {sumedha,thalmann}@miralab.unige.ch {aguye,thalmann}@lig.di.epfl.ch

ABSTRACT
Lifelike animated agents present a challenging
ongoing agenda for research. Such agent
metaphors will only be widely applicable to
on-line applications when there is a
standardised way to map underlying engines
with the visual presentation of the agents. This
paper delineates functions and specifications
of two mark-up languages for scripting the
animation of virtual characters. These
languages are: Character Mark-up Language
(CML) which is an XML-based embodied
agent character attribute definition and
animation scripting language designed to aid in
the rapid incorporation of lifelike agents into
online applications or virtual reality worlds.
CML is constructed based jointly on motion
and multi-modal capabilities of virtual human
figures. The other is Avatar Mark-up Language
(AML) which is also an XML-based multi-
modal scripting language designed to be easily
understandable by human animators and easily
generated by a software process such as an
agent. We illustrate the constructs of the
language and describe real-time execution
architectures for using these languages in
online applications.

Keywords
Embodied Agents, Mark-up Languages, AML, CML,
Lifelike Characters, Animated Expression.

1. INTRODUCTION
The merits of embodied agents for different
applications are a matter of current debate.
Commercial attempts so far have been disappointing.
Microsoft, for example, has been eagerly involved in
efforts to drive multimodal interfaces with embodied
representations, by developing the Microsoft Active

Agent tool [MSAgent, 1998]. Other commercial
companies like Semantics have now caught on and
are developing similar tools [Semantics]. However,
while these tools are a relatively easy way to add
some simple agent behaviour to web sites and
applications and have proven to be useful for rapid
prototyping, they remain very limiting to developers
who require adding believability to the agents being
used and reflect negatively on the merits of multi-
modal interfaces on the whole.
The reasons for these negative evaluations lie both in
that the animations are too rigid and that there is no
provision for believability properties. They have
been evaluated to cause user stress or irritation rather
than user support or assistance, mainly because they
only exhibit repeated mimics of identical behaviour
that is not fully context aware. It is to avoid these pit-
falls that context-sensitive affective behaviour is
introduced to the embodied agent metaphor.
On the other hand current mechanisms for building
cohesive believable characters under various theories
are of even more importance. Efforts such as those
by Elliott [Elliot, 1997], Velazquez [Velazquez,
1998], Reilly [Reilly, 1994], Sloman [Sloman, 1987],
and others aid in the definition and planning of
appropriate agent believable behaviour, but they do
not aim at creating a “fourth generation language”
for building them. Emotion and personality models
for agents will only be widely applicable when there
is an organised way to map design models to the
effected representations. Current research at IIS aims
at providing the tools for a 4G language to draw
together the properties needed to generate embodied
agents.
Although, there are several commercial and
proprietary agent animation tools available as well
as, several emotion engines or mechanisms that are
available to generate and govern believable
behaviour of animated agents, there is no common

mechanism or API to link the underlying engines
with the animated representations. The Character
Mark-up Language (CML) and Avatar Mark-up
Language (AML) are developed to bridge the gap
between the available underlying engines and agent
animation tools.
To set the scene, the paper first sets forth the
motivations for the mark-up languages developed at
the Intelligent and Interactive Systems section,
Imperial College London; describes the key features
and capabilities they offer; and discusses the
technical issues they raise based on our design and
development experience on the ESPRIT project
EP28831 MAPPA1, IST project IST-1999-10192
SoNG2 and IST project IST-1999-11683 SAFIRA3.
The paper further sets forth the key functionality that
such description and scripting languages will need to
succeed in animated agent interaction applications.
Finally, the implemented architecture is briefly
described.

2. DYNAMIC SCRIPTING OF
EXPRESSIVE BEHAVIOUR

In recent years a number of attempts have been made
to specify and develop mechanisms for the dynamic
scripting of expressive behaviour in embodied
characters. Early high-level control mechanisms for
character animation include Improv [Perlin, &
Goldberg, 1996], a rule based mechanism allowing
animators to define how synthetic actors
communicate and make decisions. Although Improv
was successful in many ways, it’s use as a scripting
mechanism was specific to the underlying
implementation. However, Improv made the first
realisation that a scripting mechanism was necessary
that allowed authors of animations to define elements
of a character’s expressed behaviour.
As parallel developments several animation tools and
many emotion and behaviour models and their
respective implementations have been produced. The
appearance of these has highlighted the need for
powerful yet generic scripting languages to bridge
the gap between behaviour generation and animation
tools. Notably Virtual Human Mark-up Language
(VHML) [VHML] and Human Mark-up Language
(HumanML) [HumanML] are examples of these.

1 MAPPA: Multimedia Access through Persistent Personal Agents
2 SoNG: portalS of the Next Generation
3 SAFIRA Supporting Affective Interactions in Real-time Applications

As a number of such scripting languages now exist,
there appears to be the need for the research
community to look at and agree upon the
requirements of and expectations from them.

3. SCRIPTING WITH MARKUP
LANGUAGES

3.1 Character Mark-up Language
Animated lifelike character representations of agents
will only be widely deployed when there are real-
time mechanisms to contextually map character and
affect models to effected animated personifications.
To approach this the SAFIRA project utilises the
design elements of an architecture for including
personality and emotional responsiveness in an
interface agent; semantic abstraction and annotation
of the knowledge being manipulated; and mapping
resulting semantic understanding onto appropriate
behaviour; which is translated into context-sensitive
character traits by varying the planned response
using variable emotion indicators and represented in
the selected modality(ies).

Currently, there are several commercial and
proprietary agent animation tools available (e.g. MS
Agent, Jack, etc.), as well as, numerous emotion
engines or mechanisms (Affective Reasoner, S&P,
etc.) that are available to generate and govern
believable behaviour of animated agents. However,
there is no common mechanism or API to link the
underlying engines with the animated representations
until recently.

CML is developed with an aim to bridge the gap
between the underlying Affect and process engines,
and agent animation tools. CML provides a map
between these tools using objects by automating the
movement of information from XML Schema
definitions into appropriate relational parameters
required to generate the intended animated
behaviour. This would allow developers to use CML
as a glue-like mechanism to tie the various visual and
underlying behaviour generation tools together
seamlessly, regardless of the platform that they run
on and the language they are developed with.

The term Character is used to denote a language that
encapsulates the attributes necessary for believable
behaviour. The intention is to provision for
characters that are lifelike but are not necessarily
human-like. Currently the attributes specified are
mainly concerned with visual expression, although

there is a limited set of specification for speech.
These attributes include specifications for animated
face and body expression and behaviour, personality,
role, emotion, and gestures.

3.1.1 Visual Behaviour Definition

Classification of behaviour is governed by the
actions an agent needs to perform in a session to
achieve given tasks, and is influenced by the agent’s
personality and current mental state. A third factor
that governs character behaviour is the role the agent
is given. A profile of both an agent’s personality and
its role are used to represent the ongoing influences
to an agent’s behaviour. These profiles are user-
specified and are defined using XML annotation.
The behaviours are defined as XML tags, which
essentially group and annotate sets of action points
generally required by the intended behavioural
action. The CML processor will interpret these high-
level behaviour tags, map them to the appropriate
action point parameters and generate an animation
script.

The Character Mark-up Language defines the
syntactic, semantic and pragmatic character
presentation attributes using structured text. CML is
based on the definition XML Schema structures. The
character mark-up-based language extends the
descriptions for facial expressions used in the FACS
system. FACS (Facial Action Coding System)
defines a set of all the facial movements performed
by a human face [Ekman & Rosenberg 1997].
Although FACS is not an SGML-based language in
nature, we use their notion of Action Units to
manipulate expressions. Character gesture attribute
definitions are based on the research and
observations by McNeill [McNeill 1992] on human
gestures and what they reveal.

Affective expression is achieved by varying the
extent and degree values of the low-level parameters
to produce the required expression. The CML
encoder will provide the high-level script to be used
in order to specify the temporal variation of these
facial expressions. This script will facilitate
designing a variety of time-varying facial expressions
using the basic expressions provided by the database.

3.1.2 Classification of Motion

The conceptual architecture upon which the
classification of motion is based on is loosely derived
from that defined by Blumberg and Russel’s research
[Blumberg & Russel 1999]. Blumberg and Russel’s

architecture uses a three-layer structure which
includes: geometry, motor and behaviour system.

We assume a motor generation module which is
responsible for the basic movements along with
correlated transitional movements that may occur
between them. Personified animation scripts are
generated by blending specification of different
poses and gestures. The base motions are further
classified by generic controls that are independent of
the character itself. For example a generic move
motion can have different representations which are
determined by the character personality attributes
defined to represent walk, skip, leap, run, etc.
Additionally, it is possible that behaviour can be
expressed through and affects different parts of the
character body, for example the intensity and degree
of arm movements are varied by an emotion while a
move is being performed. To realise different part of
a body which are to be affected while performing a
movement CML divides the character element
specifications of into three units: Head, Middle part
and Lower part. CML then provide specification of
the constructs of each unit with varying granularity.

Action composition script is generated by a CML
processor (delineated in Figure 3.1.1) which blends
actions specified with an input emotion signal to
select the appropriate gestures and achieve the
expressive behaviour. CML also provisions for the
generation of compound animation script by
facilitating the definition and parameterisation of
sequences of base movements.

The chosen base set of movements allows basic
character control (movement and interactions) as
well as assures the capability to perform unlimited
character specific animations. The interactions can
involve other characters and objects that must be
referenced by a valid id within the Graphics Engine.

Base Motions

The initial set of the CML base motions are
classified by the goal of the motion into: Movement,
Pointing, Grasping, Gaze and Gesture as follows:

Movement defines motions that require the rotation
or movement of a character from one position to
another. Positions are defined by exact coordinates,
an object position or a character position. Movement
elements are either move-to or turn-to.

Pointing defines a pointing gesture towards a
coordinate, object or character. Pointing elements are
point-to.

Grasping defines motions that require the character
to hold, throw or come in contact with an object or
another character. Grasping elements are grasp,
throw and touch.

Gaze defines the movements related to the head and
eyes. Gaze elements are gaze, track, blink, look-to
and look-at. The gaze and track elements requires
that only the eyes be moved or track an object or
character. look-to and look-at require the movement
of both head and eyes.

Gesture includes motions that represent known
gestures like hand movements to convey an
acknowledgement, a wave, etc. Gesture elements are
gesture and gesture-at

Following is an extract of the CML base movement
specifications. It shows a move-to motion. The
gesture and behaviour in which the movement is
made is inherited from the state of emotion, gesture
and behaviours specified. Further details on the
granularity and specification of CML may be found
in public SAFIRA deliverable D-SAFIRA-WP2-
D2.2v2 [André et al. 2002].

Sample CML Base Motion Syntax

Classification of emotion, and behaviour are

3.1.3 CML Specification

CML defines a script like that used for a play. It
describes the actions and sequence of actions that
will take place in a presentation system. The script is
a collection of commands that tell the objects in the
world what to do and how to perform actions. The
language is used to create and manipulate objects
that are held in memory and referenced by unique
output-ontology objects. The structure of the
language begins with a command keyword, which is
usually followed by one or more arguments and tags.
An argument to a command usually qualifies a
command, i.e. specifies what form of action the
command is to take, while a tag is used to denote the
position of other necessary information. A character
expression mark-up module will add emotion-based

mark-up resulting from emotional behaviour
generation rules to the CML descriptions.

Animated character behaviour is expressed through
the interpretation of XML Schema structures. These
structure definitions are stored in a Schema
Document Type Definition (DTD) file using XSDL
(XML Schema Definition Language). At run-time
character behaviour is generated by specifying XML
tag/text streams which are then interpreted by the
rendering system based on the rules defined in the
definition file. Its objective is to achieve a consistent
convention for controlling character animation
models using a standard scripting language that can
be used in online applications.

The language contains low-level tags defining
specific character gesture representations defining
movements, intensities and explicit expressions.
There are also high-level tags that can define
commonly used combinations of these low-level tags.

Synchronisation between the audio and visual
modalities is achieved through the use of SMIL
(Synchronized Multimedia Integration Language)
specification [SMIL]. SMIL defines an XML-based
language that allows authors to write interactive
multimedia presentations. Basically, CML uses the
SMIL <par> and <seq> tags to specify the temporal
behaviour of the modalities being presented. The
<seq> tag to define the order, start time and duration
of execution of a sequence, whereas the <par> tag is
used to specify the elements be played in parallel.
For further flexibility, CML also provides order and
time synchronisation attributes the motion and audio
elements defined.

S

3.1.4 Generating

Script generation
process componen

<cml>
<character name= “ n1” personality= “ p1”

role= “ r1” gender= “ M”
disposition= “ d1”
transition_Dstate=”t1”>

<happy int ensity= “ i1” decay= “ dc1”
target= “ o1” priority= “ pr1”>

<move- to order= “ o1” priority= “ pr2”
speed= “ s” object= “ obj1” begin= “ s1”
end= “ s4”/ >

<point - to order= “ 2” priority= “ pr3”
object= “ obj1 ” begin= “ s2” end= “ s4”/>

<utterance priority= “ pr2” begin= “ s2”>
UtteranceText

</ utterance >
</ happy >
……

</ character >

<move- to >
<order {0 to n/before/after} / >
<priority 0 to n / >
<speed {0.n to n.n(unit)/default/slow/fast } / >
<target {x,y,z/object/character} />
<begin {ss:mmm/before/after} />
<end {ss:mmm/before/after} />
<repeat > {0 to n/dur} />

</ move- to >
ample CML script

Script

through to the effected animation
ts consist of a set of MPEG-4-

compliant facial and body models; high level XML-
based descriptions of compound facial and body
features; XML-based descriptions of user-specified
personality models; behaviour definitions, a CML
processor, and finally a CML decoder. The general
function of this component is delineated in Figure
3.1.1.

Figure 3.1.1 Script Generation Function Abstract

On the same basis as the AML architecture,
described in the following section, the architecture of
an implementation generating and using CML is
divided into three conceptual components of the
supporting models and database for face and body
animation, CML scripting and an animation
rendering tool.

The script generation component assumes state and
contextual input resulting for the underlying affective
processing, planning, and domain knowledge-base
engines. Based on these inputs and a defined
character personality, the CML processor then
generates the consequent synchronised behavioural
action and utterance CML script. The script is then
passed onto the CML decoder which parses the CML
and maps its elements onto view-specific commands
for final animation rendering.

3.2 Avatar Mark-up Language
The Avatar Mark-up Language (AML) was
developed in the context of the IST project SoNG in
collaboration between IIS, Miralab and LIG. The
objective of the project was to design and develop a
full end-to-end MPEG 4 multimedia framework to
support, amongst other features, 3D avatar based
multi-user chat rooms and autonomous synthetic
characters. The first of these was to be facilitated via
the development of an interface tool that allowed

users to define animation sequences by selecting and
merging predefined and proprietary animation units.
Likewise, synthetic characters were to be controlled
in a similar manner to fill roles such as sales
assistants in virtual shops.

The SoNG design philosophy was to concentrate on
providing the tools and infrastructure necessary to
anybody who would like to develop such
applications. Hence, a common mechanism was
needed to allow both human users and autonomous
agent based systems to define full face and body
avatar animation. However, it was important to allow
future users or developers to animate their avatars
using non-procedural commands whilst trying not to
limit their creativity by imposing predefined facial
expressions or gestures on them. Also, the focus

was on providing a means of generating externally
observable behaviour and not on specifying a
mapping between internal reasoning and behaviour,
as may be the case with synthetic characters.

The design of such a mechanism saw the animation
process conceptually divided into three components
(see section 3.2.2). Firstly, a database of basic facial
and body animation units, which could be extended
or modified by a third party interested in generating
avatar animations. Secondly, a rendering system
capable of merging multiple face and body animation
units and text to speech input in real-time. Finally, a
high-level scripting language designed to allow
animators – both human and non - to specify which
animations to use together with timing, priority and
decay information. The resulting scripting language -
AML – is the only one of the three components that
we specify.

Figure 3.2.1 Animation Scenario

To illustrate the functionality of AML, an example of
its usage may be helpful. Imagine when a shop
assistant welcomes a virtual customer. It may
simultaneously smile, wave, and say, “May I help

you?”. In order to facilitate such multimodality in its
interaction, the agent is required to trigger the
appropriate face animation, body animation and TTS
modules in a time-synchronized and easy manner.
This may involve mixing of multiple gestures and
expressions into a single animation, as shown in
Figure 3.2.1.

Although no basic animations were specified within
AML, it became obvious that some parameterized
behaviours would have to be provided. Examples of
such behaviours include pointing, facing and
walking. Each of the behaviours is generated by the
implemented rendering system by calculating the
movement of the avatar as a function of its initial
position and the target coordinates supplied by the
animator.

3.2.1 AML Specification

Having given a brief overview of the requirements
and purpose of AML we will now have a look at the
syntax of the language. AML was developed as an
XML based scripting language as it is
understandable by human animators, and it is easily
generated by a software process such as an agent.
Figures 3.2.2 to 3.2.4 give an outline of the AML
syntax. We will not describe the syntax in too much
detail here. Interested readers are advised to refer to
[Kshirsagar et al. 2002].

Each individual AML script is encapsulated by the
AML root node and consists of either a Facial
Animation (FA) node or a Body Animation (BA)
node or both. FA nodes may contain a combination
of TTS nodes and Avatar Face Markup Language
(AFML) nodes, the syntax of which is illustrated in
Figure 3.2.3. Here we highlight the flexibility that is
given to an animator to define as many Expression
Tracks as required, each containing as many
Expressions as required. Expressions are stored in a
database of facial animation units. A start time and
an envelope specifying decay, duration and intensity

accompany each one. In addition, Speech Tracks may
be specified when a TTS engine is not available or
suitable.

Similarly, BA nodes contain Avatar Body Markup
Language (ABML) nodes. The syntax can be seen in
Figure 3.2.4. Here we draw your attention to a set of
parameterized behaviour nodes, namely
FacingAction, PointingAction, WalkingAction and
ResettingAction. Each behaviour node specifies a
start time, speed and priority. A subset also specifies
target coordinates for the behaviour. For walking a
number of control points can be specified to define
the route taken by an avatar in 3D space. In addition,
an arbitrary number of PredefinedAnimation nodes
can be specified drawing from a database of body
animation units. An intensity node is provided for
predefined animations.

AML scripts offer a number of advantages to
animators – human or non. Firstly they give explicit
control over the mutual synchronization of facial
expressions, gestures and speech by allowing start
times and durations to be specified for each. This
means animators are free to have even partial overlap
of animation tracks starting before, together with or
after any other track. Secondly, AML is independent
of the basic animation units defining facial
expressions and gestures. This allows animators the
freedom to be creative by modifying or extending the

<AML face id=“x” body id=“y” root path= “p”
name = “name of animation”>
 <FA start_time=“t1” input_file= “f1”>
 <TTS mode = “m” start_time = “t3”
 output_fap = “f3” output_wav = “f4”>
 <Text>TextToBeSpo ken< \ Text>
 < \ TTS>
 <AFML>…< \ AFML>
 < \ FA>
 <BA start_time = “t2” input_file = “f2”>
 <ABML>…< \ ABML>
 < \ BA>
<\ AML>

Figure 3.2.2 AML Structure

<AFML>
 <Settings>
 <Fps>FramesPerSecond</Fps>
 <Duration>mm:ss:mmm</Duration>
 <FAPDBPath>“path f or expression (.ex)
 files”</FAPDBPath>
 <SpeechPath>“path for speech
 animation (.vis) files”</SpeechPath>
 </Settings>
 <ExpressionsFiles>
 <File>“expression file name” </File>
 </ExpressionsFiles>
 <ExpressionsTrack name=“Track name”>
 <Expression>
 <StartTime>mm:ss:mmm</StartTime>
 <ExName>“file name”</ExName>
 <Envelope>
 <Point>
 <Shape>{log,exp,linear}</Shape>
 <Duration>InSeconds</Duration>
 <Int>NormalizedIntensity</Int>

</Point>
 </Envelope>
 </Expression>
 </ExpressionsTrack>
 <SpeechTrack name=“name_of_track”>
 <StartTime>mm:ss:mmm</StartTime>
 <FileName>“viseme or fap file name”
 </FileName>
 <AudioFile>“FileName”</AudioFile>
 </SpeechTrack>
</AF ML>

Figure 3.2.3 AFML Syntax

animations used by AML. This feature also makes
AML independent of the underlying implementation
making it suitable for the animation of any character-
based system.

3.2.2 AML Architecture

Although only the syntax of AML is specified, a
reference implementation of an AML rendering
mechanism – the AML Processor – has been
developed in SoNG. Figure 3.2.5 gives an overview

of the AML architecture. As mentioned previously,
the AML architecture is divided into three
conceptual components: databases of face and body
animation units, a rendering mechanism and the
AML script itself. The dotted arrows between the
face and body databases indicate that the AML script
makes reference to their content. The databases can
be easily extended to contain any basic animation
definitions. Expressions such as smile and surprise as
well as head movements and body gestures can be
stored. Indeed variations of a single animation may
be stored to reflect, for example, changes in mood
and personality.

Figure 3.2.5 AML Architecture
Once a script has been generated, it can be passed to
the AML Processor where appropriate sub-modules
are called in order to decipher the script and generate
animations. Notice that a behaviour library has been
implemented in order to deal with parameterised
behaviours such as pointing and walking.

As can be seen from Figure 3.2.5, the emphasis in the
AML implementation is on the generation of
animation in a seamless and synchronized manner.
No support is provided for the explicit representation
of emotions or personality. This made the
implementation of the AML Processor relatively
simple. However, it does not limit the type and
variety of animations that can be generated.

4. SUMMARY AND CONCLUSIONS
The paper presents an account of two approaches to
specifying scripting languages for character
animation which are currently being developed and
evaluated at Imperial College London. Each
approach evolved through the context of the projects

<ABML>
 <Settings>…<Settings>
 <BodyAnimationTrack name =“Track name”>
 <Mask>BAP i ndices = 0/1</Mask>
 <PredefinedAnimation>
 <StartTime>
 {mm:ss:mmm/autosynch/autoafter}
 </Start Time>
 <FileName>“filename.bap”</FileName>
 <Speed>{normal/slow/fast}</Speed>
 <Intensity>0 to n</Intensity>
 <Priorit y>0 to n</Priority>
 </PredefinedAnimation>
 <FacingAction>
 <StartTime>
 {mm:ss:mmm/autosynch/autoafter}
 </StartTime>
 <XCoor>target’s X coordinate
 </XCoor>
 <YCoor>target’s Y coordinate
 </YCoor>
 <ZCoor> target’s Z coordinate
 </ZCoor>
 <Speed>{normal/slow/fast}</Speed>
 <Priority>0 to n</Priority>
 </FacingAction>
 <PointingAction>
 <StartTime>
 {mm:ss:mmm/autosynch/autoafter}
 </StartTime>
 <XCoor>target’s X coo rdinate
 </XCoor>
 <YCoor>target’s Y coordinate
 </YCoor>
 <ZCoor>target’s Z coordinate
 </ZCoor>
 <Speed>{normal/slow/fast}</Speed>
 <Priority>0 to n</Priority>
 </PointingAction>
 <WalkingAction>
 <StartTime>
 {mm:ss:mmm/autosynch/autoafter}
 </StartTime>
 <ControlPoint>
 <XCoor> target’s X coordinate
 </XCoor>
 <ZCoor> target’s Z coordinate
 </ZCoor>
 </ControlPoint>
 <Speed>{normal/slow/fast}</Speed>
 <Prio rity>0 to n</Priority>
 </WalkingAction>
 <ResettingAction>
 <StartTime>
 {mm:ss:mmm/autosynch/autoafter}
 </StartTime>
 <Speed>{normal/slow/fast}</Speed>
 <Priority>0 to n</Priority>
 </ResettingAction>
 </BodyAnimatio nTrack>
</ABML>

Figure 3.2.4 ABML Syntax

AML
Script

Body
DB

Face
DB

FBA
Encoder

Audio
Encoder

AFML
Parser

ABML
Parser

Behavio
ur Lib

TTS
Engine

A
M

L
Pr

oc
es

so
r

Animation

they were developed within. CML took a top-down
approach by defining high-level attributes for
character personality, emotion and behaviour that are
integrated to form the specification of synchronised
animation script. New or unspecified behaviours are
formed by blending together base elements and
attributes thereby providing animators with the
flexibility to generate animation script as required.
Where as AML took a bottom-up approach in which
the language provides a generic mechanism for the
selection and synchronised merging of animations. In
addition, AML provides the flexibility for animators
(human or non) to define higher-level specifications
based on the key elements provided plus any others
that may be defined. The generic nature of AML
implies that any software implementation supporting
it will be fairly simple.

Forthcoming evaluation of each approach will further
corroborate their merits. Our experience on the
projects involved presented us with a possibility of a
need to merge the specifications of both languages in
a two-phase sequence for scripting character
animation. Recent emergence of mark-up languages
serving similar purposes have also exposed a
profound need to agree on taxonomy for the affective
and motion elements used, the granularity level of
such definitions, what taxonomy for the mark-up tag
definitions should be adopted, are current languages
sufficient for the requirements of believable affective
behaviour animation delivery?, whether Mpeg 4
FAPs and BAPs are sufficient or too granulated to
provide the taxonomy required for real-time
animation?, what affective and personality theories
should be adopted to define the tags for affective
expression?, what granularity of affective description
is required?, as well as many more open issues.

5. ACKNOWLEDGMENTS
The requirement for and specification of CML was
originally a contribution of the European ESPRIT
project EP28831 MAPPA. CML as described in this
paper is developed within the European IST project
IST-1999-11683 SAFIRA and AML is developed in
the European IST project IST-1999-10192 SoNG.

6. REFERENCES
[André et al. 2002] André E., Arafa Y., Botelho L.,

Figueiredo P., Gebhard P., Höök K., Paiva A., Petta
P., Ramos P., Sengers P., and Vala M., D-SAFIRA-
WP2-D2.2v2 Framework Specification for Developing
Affective Agents. SAFIRA Project IST-1999-11683
(2002)

[Blumberg & Russel 1999] Blumberg B. and Russell K.:
Behavior-Friendly Graphics, 1999

[Ekman & Rosenberg 1997] Ekman, P. and Rosenberg, E.
L..What the Face Reveals: Basic and Applied Studies
of Spontaneous Expression Using the Facial Action
Coding System. Oxford University Press, 1997.

[Elliot, 1997] Elliott, C. Using the Affective Reasoner to
Support Social Simulation, IJCAI’93, p194-200

[HumanML] -http://www.humanmarkup.org/work/
humanmlSchema.zip

[Kshirsagar et al. 2002] Kshirsagar, S., Guye-Vuilleme, A.,
Kamyab, K., Magnenat-Thalmann, N., Thalmann, D.
and Mamdani, E., “Avatar Markup Language”, to
appear in S. Müller and W. Stürzlinger (Editors),
Proceedings of the Eigth Eurographics Workshop on
Virtual Environments 2002

[McNeill, 1992] McNeill, D. Hands and Mind. The
University of Chicago Press, 1992.

[MSAgent, 1998] Microsoft Corporation: Microsoft Agent
Programming Interface Overview, 1998.
http://www.microsoft.com

[Perlin, & Goldberg, 1996] K. Perlin, and A. Goldberg,
“Improv: A System for Scripting Interactive
Characters in Virtual Worlds”, Proceedings of
SIGGRAPH 96, ACM Press, pp. 205-216.

[Reilly, 1994] Reilly, W.S., & Bates, J. Emotions as part of
a broad Agent Architecture, Working notes of the
Workshop on Architectures Underlying Motivation
and Emotion, 1993.

[Sloman, 1994] Sloman, A. “Motives, mechanisms and
emotions”, Cognition and Emotion, 1:217-234, 1987.

[SMIL] http://www.w3.org/AudioVideo/
[Semantics] http://www.semantics.com
[Velazquez, 1998] Velásquez, J. A Computational

Framework for Emotion-based Control. In proc. of
SAB’98 Workshop on Grounding Emotions in
Adaptive Systems, 1998.

[VHML] http://www.vhml.org/downloads/VHML

http://www.vhml.org/downloads/VHML
http://www.semantics.com/
http://www.w3.org/AudioVideo/

	INTRODUCTION
	DYNAMIC SCRIPTING OF EXPRESSIVE BEHAVIOUR
	SCRIPTING WITH MARKUP LANGUAGES
	Character Mark-up Language
	Visual Behaviour Definition
	Classification of Motion
	CML Specification
	Generating Script

	Avatar Mark-up Language
	AML Specification
	AML Architecture

	SUMMARY AND CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

